Deep Learning: Zero To One

Music Generation - Google Magenta Best Demo NIPS 2016 LSTM RNN - Deep Learning: Zero to One

Informações:

Synopsis

I talk through generating 10 melodies, two of which I play at the conclusion using a model trained on thousands of midi examples contained in a .mag Magenta file bundle. I used the Biaxial RNN (https://github.com/hexahedria/biaxial-rnn-music-composition) by a student named Daniel Johnson and the Basic RNN (https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn#basic) by Google's Magenta group within TensorFlow and learned that priming a melody with a single note can set the key for each generated melody, and, Anaconda's single 'source activate' line replaces the need for virtualenv and installs all of the necessary dependencies to make this environment easily reproducible. 2 - 3 more details are posted at: https://medium.com/@SamPutnam/deep-learning-zero-to-one-music-generation-46c9a7d82c02

Join Now

Join Now

  • Unlimited access to all content on the platform.
  • More than 30 thousand titles, including audiobooks, ebooks, podcasts, series and documentaries.
  • Narration of audiobooks by professionals, including actors, announcers and even the authors themselves.
Try it Now Firm without compromise. Cancel whenever you want.

Share